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Transmission Line and Back Loaded Horn Physics 
 
Introduction 
 

In order to differentiate between a transmission line and a back loaded horn, it is 
really important to understand the physics that make them work acoustically. If we 
consider a driver mounted at the closed end of an expanding path with the far end open 
to the room then the behavior of the air volume will help define if the geometry is 
behaving as a transmission line or a back loaded horn. The following discussion is 
derived from my horn and transmission line articles and represents my personal 
understanding and definitions. Other people may or may not have a common 
explanation and naming/labeling scheme. But in the end, the air in the volume will 
behave as governed by the laws of physics and will not be influenced in the least by 
arguments over different definitions or naming/labeling conventions.  

 
 The first step is to define what a horn is in terms of its acoustic and physical 
properties. Consulting Wikipedia [reference : http://en.wikipedia.org/wiki/Horn_(acoustic)] 
the following definition is provided. 
 

“A horn is a tapered sound guide designed to provide an acoustic impedance match between a 

sound source and free air. This has the effect of maximizing the efficiency with which sound 

waves from the particular source are transferred to the air. Conversely, a horn can be used at the 

receiving end to optimize the transfer of sound from the air to a receiver.” 

 

The easy part of this definition is the “tapered sound guide” geometry, the 
physical property. Everybody can visualize this type of geometry and in many people’s 
minds this is the sole property that defines a back loaded horn. But the tougher part of 
the definition is the acoustic property, an “acoustic impedance match” between the 
source and the air in the room, which is not so easy to visualize. The second part of the 
definition is determined by the effective size of the horn’s mouth, the resulting acoustic 
impedance, and the frequency range being reproduced. 

 
 A one dimensional wave equation, as shown below, can be used to describe the 
air motion in both transmission line and horn geometries. The second term on the left 

side of the equals sign accounts for the flare geometry in the equation of motion. If m is 

equal to zero the geometry is straight, if m is not zero the geometry is contracting or 

expanding along the length depending on the sign. The third term on the left of the 

equals sign accounts for distributed fiber damping in the air volume as defined by  a 

viscous damping coefficient. This equation of motion is a combined result that can be 
used to mathematically describe a fiber filled transmission line or an empty horn.  

Restating the equation by setting the frequency dependent damping term  to zero 
leaves the classic exponential horn wave equation found in most acoustics texts. 
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Solving the equation of motion requires the application of two boundary 
conditions. At the driver end, a unit oscillating velocity is typically assumed as one 
boundary condition. At the open end, the acoustic impedance of a circular piston 
mounted on an infinite baffle is usually assumed as the second boundary condition. The 
open end boundary condition is a source of frequency dependent mass loading 
(imaginary part) and resistive damping (real part). 
 
How a Transmission Line and an Exponential Horn Work 
 
 To understand how a transmission line and an exponential horn work, let’s start 
with a straight transmission line and plot the acoustic impedance at the driver end and 
the ratio between the applied volume velocity at the driver end and the resulting volume 
velocity at the open end (remember that volume velocity is air velocity times the cross-
section area). By incrementally increasing the cross-sectional area of the transmission 
line’s open end, changes in the plotted results demonstrate the physics involved in the 
workings of an exponential horn. Table 1 below summarizes the geometries used for this 

study. In the table, the lower cut-off frequency fc typically used for describing a horn is 

calculated based on the open end (the transmission line’s terminus or the horn’s mouth) 
cross-sectional area using the following equation. 
 

 
Table 1 : Transmission Line and Horn Geometries 

Geometry S0 SL / S0 SL L fc Figure 

a 0.047 1 0.047 0.820 447.2 1 
b 0.047 2 0.094 0.820 316.2 2 
c 0.047 3 0.141 0.820 258.2 3 
d 0.047 4 0.188 0.820 223.6 4 
e 0.047 5 0.235 0.820 200.0 5 
f 0.047 10 0.471 0.820 141.4 6 
g 0.047 15 0.706 0.820 115.4 7 
h 0.047 20 0.942 0.820 100.0 8 

Units m2 --- m2 m  Hz --- 

  
 
Figure 1 shows the results for the straight transmission line. The fundamental 

resonance in the acoustic impedance plot occurs at 92 Hz which matches within 5% the 
calculated quarter wavelength prediction for a straight transmission line. In the quarter 
wavelength calculation below the physical length is increased to include an approximate 
end correction term. 
 

f0 = c / (4 x Leffective)  

f0 = (344 m/sec) / (4 x (0.820 m + 0.6 x ((0.047 m2) / )1/2)) = 96 Hz 
  
The subsequent resonant peaks are at 3, 5, 7, …. multiples of the fundamental 1/4 
wavelength frequency. The height and sharpness of the peaks, in the impedance and 
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the volume velocity ratio plots, decrease as frequency increases due to the rising 
resistive (real) component of the open end’s acoustic impedance. The acoustic 
impedance of the circular piston boundary condition assumed for the open end of a 
quarter wavelength resonator is plotted in Figure 9 as a function of frequency.  
 

Standing waves result when sound waves traveling the length of the transmission 
line are reflected back towards the driver end. Reflections occur at low frequencies 
because the mouth is relatively small and the acoustic impedance acts like a slug of 
mass (almost like a wall). In Figure 9, the straight transmission line’s fundamental 
standing wave corresponds to an acoustic impedance value with real and imaginary 
components consistent with approximately 0.41 on the horizontal axis. To control the 
peaky acoustic output from the open end of the transmission line, fiber stuffing would 
need to be added to viscously damp the sharp resonances generated by the standing 
waves. 
 
 Figure 2 shows the plots for an expanding transmission line geometry that has 
twice the open end area as the original straight transmission line plotted in Figure 1. 
Notice that the fundamental resonance has increased from 92 Hz to 103 Hz. Also, all of 
the peaks and nulls are a little less pronounced and broader. In Figure 9, this expanding 
transmission line’s fundamental standing wave corresponds to an acoustic impedance 
value with real and imaginary components consistent with approximately 0.65 on the 
horizontal axis.  For this geometry less fiber stuffing would be needed to control the 
peaks in the acoustic output from the open end 
 
 Figures 3, 4, and 5 continue to increase the open end area. As the heights of the 
peaks in the acoustic impedance and volume velocity ratio plots decrease and broaden, 
the valleys between successive peaks start to fill in and the lower bound of the plotted 
data rises. In each sequential plot, the acoustic damping provided by the open end 
increases and extends lower in frequency meaning less fiber stuffing would be required. 

Reviewing the data in Table 1, the lower cut-off frequency fc is dropping in frequency as 

the open end’s cross-sectional area increases. 
 
 By Figure 6, the acoustic impedance is settling in and oscillating only slightly 

about ( x c) / S0 while the ratio of volume velocities is approaching a constant value of 
three for frequencies above 300 Hz.  The phase angles also show none of the large 180 
degree phase swings typically associated with standing wave resonances. No fiber 
stuffing is required for this geometry. 
 

Figures 6, 7, and 8 all appear to show horn-like responses. In each case the 
damping provided by the open end’s acoustic impedance boundary condition is sufficient 
to suppress the standing wave resonances seen in the previous plots. Fiber stuffing 
would not be required for any of these geometries. The last geometry defined in Table 1, 
and shown in Figure 8, is what I define as a consistent horn geometry since the 

exponential flare and the mouth size are both tuned to a lower cut-off frequency fc of 100 

Hz. All of the other rows in Table 1 are transmission lines geometries transitioning to 
compromised horn geometries as you move down the rows of the table 
 
 To summarize the results shown in Figures 1 through 8, the geometric transition 
from straight unstuffed transmission line to consistent exponential horn geometry was 
studied by increasing the open end cross sectional area. The study held the length and 
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the driven end cross sectional area constant while maintaining exponentially flared 
geometries. The geometries that lie between the transmission line and the final 
consistent exponential horn are all in a gray area of transmission line or compromised 
exponential horn designs. The first observation made was that the fundamental quarter 
wavelength resonant frequency of the transmission line rose as the geometry expanded 
along the length. This is consistent with expanding TL design results described 
elsewhere on my site.  
 

At the same time, increasing the open end’s area increased the acoustic 
damping boundary condition. This results in the attenuation and broadening of the 
resonant peaks, and filling in of the deep nulls that exist between the peaks, typically 
associated with the higher harmonics of a transmission line’s fundamental quarter 
wavelength resonance. As the expanding transmission line’s open end area continues to 
increase, this effect starts to become more evident at lower harmonics and eventually 
even at the fundamental resonant frequency. The damped resonant peaks spread and 
merge, filling in the valleys between them, producing relatively constant acoustic 

impedance above the lower cut-off frequency fc. As transmission line geometry 

transitions to a consistent exponential horn there is no longer evidence of standing 
waves, at distinct frequencies, producing a series of sharp peaks and nulls in the plotted 
responses. As the open end area increases, the acoustic boundary condition’s damping 
extracts sound energy that would normally be reflected back into the geometry and 
broadcasts it out into the room yielding an increasingly efficient sound energy transfer.   
 
 A properly sized and designed exponential horn, a consistent design, is a non-
resonant or in other words a highly damped acoustic enclosure. Without the full damping 
supplied by the mouth, compromised exponential horns exhibit weak quarter wavelength 
standing waves similar to a transmission line enclosure. This counters one prevailing 
myth about standing waves in horns; there are no half wavelength standing wave 
resonances associated with a horn geometry. All longitudinal standing wave resonances 
in transmission lines and compromised horn geometries exhibit quarter wavelength 
pressure and velocity distributions. 
 
 To understand the increased efficiency attributed to horn loading a driver, the 

volume velocity ratio  has been plotted in the bottom two plots of Figures 1 through 8. 

Volume velocity at the open end is important because it can be used directly to calculate 
the pressure and thus the SPL at some location out in the listening environment. In all of 
the plots the volume velocity ratio at 10 Hz is equal to unity, what goes in the driver end 
comes out of the open end. But as we move up above 100 Hz, the transmission line 
response is seen as a series of tall narrow peaks while the more horn like response 

becomes an elevated value across all frequencies. The volume velocity ratio  in 
Figures 1 exhibits discrete peaks the first exceeding a ratio of 5 while the remaining 
peaks are all below a ratio of 5. Comparing this to Figure 8, the volume velocity ratio 
above 100 Hz is consistently hovering between 4 and 5. The series of plots 2 through 7 
track the changes that take place in the volume velocity ratio curve as the geometry 
transitions from transmission line to consistent exponential horn geometry. 
 

Extending these observations about the volume velocity ratio curves, to the 
acoustic SPL output produced by transmission lines and consistent exponential horns, 
leads to the following understanding of why the horn speaker is so efficient. The 
damping provided by the real part of the acoustic impedance at the horn’s mouth 
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efficiently transfers sound energy into the listening room environment at all frequencies 

above the lower cut-off frequency fc. Without this constant transfer of energy, a 

significant portion of the sound energy is reflected back into the flared geometry 
producing standing waves at discrete frequencies related to the geometry’s length and 
flare rate. These standing waves produce narrow bands of higher SPL in the listening 
room due to the peaking resonance of the volume velocity at the open end.  The 
consistent horn’s efficient transfer of sound energy into the room produces a more 
uniform higher SPL output across the frequency spectrum and removes the potential for 
peaky acoustic output due to axial standing waves associated with a transmission line or 
compromised horn designs. To battle the peaky acoustic output of transmission lines, 
fiber stuffing is typically distributed along the length of the geometry which in turn 
reduces the SPL output generated at the open end..  
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Figure 1 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 1 in Table 1 
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Figure 2 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 2 in Table 1 
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Figure 3 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 3 in Table 1 
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Figure 4 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 4 in Table 1 
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Figure 5 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 5 in Table 1 
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Figure 6 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 10 in Table 1 
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Figure 7 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 15 in Table 1 
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Figure 9 : Acoustic Impedance and Volume Velocity Ratio for SL / S0 = 20 in Table 1 
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Figure 9 : Circular Horn Mouth Acoustic Impedance 
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Conclusions 
 
 Using my definitions, the key parameter that separates transmission line 
behavior from horn behavior is the area of the terminus or mouth. At low frequencies, the 
area of the mouth of a horn needs to be huge to provide the acoustic damping required 
to control standing wave resonances.  
 

If the terminus or mouth is too small, standing wave resonances will be 
generated at low frequencies yielding transmission line behavior. However, as frequency 
increases the acoustic impedance boundary condition at the open end will transition 
from mass loading to resistive loading and the performance will also shift acoustically 
from a transmission line response to a horn response.  

 
In Figure 9, the boundary between transmission lines and horns is typically 

defined at a value of 2 on the horizontal axis. Transmission line behavior would be 
expected for open end geometries that fall between 0 and 2 on the horizontal axis. As 
one approaches 2 and extends slightly above 2 there will be a transition region from 
transmission line to horn behavior. Above 2 the damping provided by the open end is 
sufficient to control standing wave resonances, efficiently broadcast sound out into the 
listening room, and horn behavior is exhibited.  

 
Almost all back loaded horn designs found on the Internet are really acting as 

transmission lines at low frequencies and never approach horn behavior because the 
mouth is too small. While there are general rules of thumb equations for setting a horn’s 
geometry and the coupling volume between the driver and the horn throat, these 
equations have all been derived assuming that the mouth size places the design above 
2 on the horizontal axis in Figure 9. Blindly applying these relationships to back loaded 
“horns” with small mouth areas is a hit or miss proposition with respect to the expected 
system performance. Incorrectly applying horn equations is no better than placing a 
woofer in a random ported box hoping the two work together producing a smooth and 
extended low frequency response. Sometimes it works....... 


